Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Dis Model Mech ; 17(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38501211

RESUMO

Mitogen-activated protein 3 kinase 1 (MAP3K1) has a plethora of cell type-specific functions not yet fully understood. Herein, we describe a role for MAP3K1 in female reproductive tract (FRT) development. MAP3K1 kinase domain-deficient female mice exhibited an imperforate vagina, labor failure and infertility. These defects corresponded with shunted Müllerian ducts (MDs), the embryonic precursors of FRT, that manifested as a contorted caudal vagina and abrogated vaginal-urogenital sinus fusion in neonates. The MAP3K1 kinase domain is required for optimal activation of the Jun-N-terminal kinase (JNK) and cell polarity in the MD epithelium, and for upregulation of WNT signaling in the mesenchyme surrounding the caudal MD. The MAP3K1-deficient epithelial cells and MD epithelium had reduced expression of WNT7B ligands. Correspondingly, conditioned media derived from MAP3K1-competent, but not -deficient, epithelial cells activated a TCF/Lef-luciferase reporter in fibroblasts. These observations indicate that MAP3K1 regulates MD caudal elongation and FRT development, in part through the induction of paracrine factors in the epithelium that trans-activate WNT signaling in the mesenchyme.


Assuntos
Células Epiteliais , MAP Quinase Quinase Quinase 1 , Vagina , Animais , Feminino , Camundongos , Células Epiteliais/metabolismo , Epitélio/metabolismo , Vagina/metabolismo , Via de Sinalização Wnt , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo
2.
J Immunol Res ; 2023: 6696967, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928434

RESUMO

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies and tissue inflammation. Mesenchymal stem cells (MSCs) have emerged as a promising candidate therapy for SLE owing to the immunomodulatory and regenerative properties. Circulating miRNAs are small, single-stranded noncoding RNAs in a variety of body fluids that regulate numerous immunologic and inflammatory pathways. Recent studies have revealed many differentially expressed circulating miRNAs in autoimmune diseases including SLE. However, the role of circulating miRNAs in SLE has not been extensively studied. Here, we performed small RNA sequencing analysis to compare the circulating miRNA profiles of SLE patients before and after MSC transplantation (MSCT), and identified a significant decrease of circulating miR-320b level during MSCT. Importantly, we found that the expression of circulating miR-320b and its target gene MAP3K1 was closely associated with SLE disease activity. The in vitro experiments showed that decreased MAP3K1 level in SLE peripheral blood mononuclear cells (PBMCs) was involved in CD4+ T-cell proliferation. In MRL/lpr mice, miR-320b overexpression aggravated symptoms of SLE, while miR-320b inhibition could promote disease remission. Besides, MSCs regulate miR-320b/MAP3K1 expression both in vitro and in vivo. Our results suggested that circulating miR-320b and MAP3K1 may be involved in CD4+ T-cell proliferation in SLE. This trial is registered with NCT01741857.


Assuntos
Lúpus Eritematoso Sistêmico , MAP Quinase Quinase Quinase 1 , MicroRNAs , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Leucócitos Mononucleares/metabolismo , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/terapia , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos Endogâmicos MRL lpr , MicroRNAs/genética , MicroRNAs/metabolismo
3.
Anim Biotechnol ; 34(3): 686-697, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37014133

RESUMO

MAP3K1 is a significant member of the MAPK family, and its expressed MEKK1 protein has a wide range of biological activities and is an essential node in the MAPK signaling pathway. A significant number of studies have revealed that MAP3K1 plays a complicated function in the control of cell proliferation, apoptosis, invasion and movement, participates in the regulation of the immune system, and plays an important role in wound healing, tumorigenesis and other processes. In this study, we looked at the involvement of MAP3K1 in the control of hair follicle stem cells (HFSCs). Overexpression of MAP3K1 significantly promoted the proliferation of HFSCs by inhibiting apoptosis and promoting the transition from S phase to G2 phase. The transcriptome identified 189 (MAP3K1_OE) and 414 (MAP3K1_sh) differential genes. The two pathways with the most significant enrichment of differentially expressed genes were the IL-17 signaling pathway and TNF signaling pathway, and the significantly enriched terms in the GO enrichment analysis involved regulation of response of external stimulus, inflammatory and cytokine. Indicate that MAP3K1 can function as a promoting factor in HFSCs through the induction of cell cycle transition from S phase to G2 phase can inhibition apoptosis by mediating crosstalk among several pathways and cytokines.HIGHLIGHTSAbnormal MAP3K1 expression in hair follicle stem cells (HFSCs) can impair HFSC proliferation and apoptosis.MAP3K1 controls hair follicle stem cell proliferation via modulating cell apoptosis and the ratio of cells in S phase/G2 phase.The differential genes shared by MAP3K1_sh and MAP3K1_OE are enriched in GO terms such as inflammation, adipocyte differentiation, acute inflammation, and so on.


Assuntos
Folículo Piloso , MAP Quinase Quinase Quinase 1 , Animais , Folículo Piloso/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/metabolismo , Perfilação da Expressão Gênica , Citocinas/genética , Citocinas/metabolismo , Inflamação/metabolismo
4.
J Clin Lab Anal ; 36(6): e24470, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35524422

RESUMO

BACKGROUND: Papillary thyroid carcinoma (PTC) grows slowly but has a great risk of metastasis. MicroRNAs are well known as vital tumor-related gene regulators. In PTC, the role of miR-203a-3p and the underlying mechanisms remain not completely understood. METHODS: We conducted CCK8 assay, wound healing assay, transwell experiment and flow cytometry analyses to investigate the function of miRNA-203a-3p. The interaction of miRNA-203a-3p with its gene MAP3K1 was characterized by quantitative real-time polymerase chain reaction, western blotting and luciferase assay. RESULTS: We found that the levels of miRNA-203a-3p were statistically decreased in PTC tissues. When mimics were delivered to TPC-1 and KTC-1 cells to upregulate miR-203a-3p, it was observed that cell proliferation, metastatic abilities and cell cycle process were prevented but cell apoptosis was enhanced. Furthermore, we proved the interaction between MAP3K1 and miR-203a-3p. Intriguingly, similar to miR-203a-3p mimics, siMAP3K1 showed a tumor-suppressive effect, and this effect could be reversed when miR-203a-3p was simultaneously inhibited. Finally, selected autophagy-linked proteins such as LC3 Beclin-1 were detected and found to be increased when miR-203a-3p was upregulated or MAP3K1 was inhibited. CONCLUSION: Overall, miR-203a-3p inhibits the oncogenic characteristics of TPC-1 and KTC-1 cells via suppressing MAP3K1 and activating autophagy. Our findings might enrich the understanding and the therapeutic strategies of PTC.


Assuntos
Carcinoma Papilar , MAP Quinase Quinase Quinase 1 , MicroRNAs , Neoplasias da Glândula Tireoide , Autofagia/genética , Carcinoma Papilar/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia
5.
DNA Cell Biol ; 41(6): 590-599, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35533015

RESUMO

The liver of poultry is the primary site of lipid synthesis. The excessive production of lipids accumulates in liver tissues causing lipid metabolism disorders, which result in fatty liver disease and have a transgenerational effect of acquired phenotypes. However, its specific mechanisms have not yet been fully understood. In this study, the differentially expressed miR-375 as well as its target gene MAP3K1 (mitogen-activated protein kinase kinase kinase 1) were screened out by interaction network analysis of microRNA sequencing results and transcriptome profiling in the fatty liver group of the F0-F3 generation (p < 0.05 or p < 0.01). Furthermore, the results showed that the number of lipid droplets and triglyceride content were significantly decreased after upregulation of miR-375 in primary hepatocyte culture in vitro (p < 0.05 or p < 0.01). The MAP3K1 knockdown group exhibited the opposite trends (p < 0.05 or p < 0.01). P53, Bcl-x, PMP22, and CDKN2C related to cell proliferation were significantly upregulated or downregulated after knocking down MAP3K1 (p < 0.05). This research uniquely revealed that silencing miR-375 inhibits lipid biosynthesis and promotes cell proliferation, which may be due to the partial regulation of the expression level of MAP3K1, thereby further participating in the transgenerational inheritance process of regulating liver lipid metabolism. These results reveal the pathogenesis of fatty liver in noncoding RNA and provide good candidate genes for breeding progress of disease resistance in chickens.


Assuntos
Fígado Gorduroso , MAP Quinase Quinase Quinase 1 , MicroRNAs , Animais , Galinhas/genética , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Fígado Gorduroso/veterinária , Metabolismo dos Lipídeos/genética , Fígado/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Aves Domésticas , Triglicerídeos/metabolismo
6.
Cell Cycle ; 21(11): 1194-1211, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35230926

RESUMO

Colon cancer (CC) is a common malignant tumor of the digestive tract. Circular RNAs (circRNAs) play important roles in the progression of CC. This study aimed to explore the role and mechanism of circRNA_0085315 in CC. In this study, we used qRT-PCR and Western blot assays to analyze the expressions of circRNA, miRNA, and mRNA as well as the expression of the related proteins. Luciferase reporter, RNA pull-down, and qRT-PCR assays were used to prove the relationship among circRNA, miRNA, and mRNA. CCK-8, colony formation, and transwell assays were used to perform the analysis of cell proliferation, migration, and invasion. Our results showed that the higher circRNA_0085315 expression led to the poorer prognosis of CC patients. The function of circRNA_0085315 as a ceRNA in competing with MAP3K1 mRNA to sponge miR-1200. CircRNA_0085315 sponged miR-1200 to promote cell proliferation, migration, and invasion and affected the expression of Ki67, MMP2, E-cadherin, and N-cadherin, but not circRNA_0085315-mut without the binding site of miR-1200. MAP3K1-overexpression or miR-1200 mimics prevented the suppression on the enhanced cell proliferation, migration, and invasion caused by circRNA_0085315-overexpression. circRNA_0085315 increased the phosphorylation levels of JNK, p38, and ERK1/2 by stimulating MAP3K1 up-regulation caused by miR-1200 inhibition. In conclusion, circRNA_0085315 serves as a ceRNA and promotes CC progression through the activation of the MAPK signaling pathway mediated via the miR-1200/MAP3K1 axis, suggesting that circRNA_0085315 may be a promising diagnostic and therapeutic target for CC.


Assuntos
Neoplasias do Colo , MAP Quinase Quinase Quinase 1 , MicroRNAs , RNA Circular , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34911761

RESUMO

Arterial remodeling is an important adaptive mechanism that maintains normal fluid shear stress in a variety of physiologic and pathologic conditions. Inward remodeling, a process that leads to reduction in arterial diameter, plays a critical role in progression of such common diseases as hypertension and atherosclerosis. Yet, despite its pathogenic importance, molecular mechanisms controlling inward remodeling remain undefined. Mitogen-activated protein kinases (MAPKs) perform a number of functions ranging from control of proliferation to migration and cell-fate transitions. While the MAPK ERK1/2 signaling pathway has been extensively examined in the endothelium, less is known about the role of the MEKK3/ERK5 pathway in vascular remodeling. To better define the role played by this signaling cascade, we studied the effect of endothelial-specific deletion of its key upstream MAP3K, MEKK3, in adult mice. The gene's deletion resulted in a gradual inward remodeling of both pulmonary and systematic arteries, leading to spontaneous hypertension in both vascular circuits and accelerated progression of atherosclerosis in hyperlipidemic mice. Molecular analysis revealed activation of TGFß-signaling both in vitro and in vivo. Endothelial-specific TGFßR1 knockout prevented inward arterial remodeling in MEKK3 endothelial knockout mice. These data point to the unexpected participation of endothelial MEKK3 in regulation of TGFßR1-Smad2/3 signaling and inward arterial remodeling in artery diseases.


Assuntos
Hipertensão Pulmonar/patologia , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Remodelação Vascular/fisiologia , Animais , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Hipertensão Pulmonar/metabolismo , Isquemia , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , Camundongos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Moduladores Seletivos de Receptor Estrogênico/toxicidade , Transdução de Sinais , Tamoxifeno/toxicidade , Fator de Crescimento Transformador beta/genética
8.
PLoS Negl Trop Dis ; 15(12): e0010027, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879059

RESUMO

BACKGROUND: The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. METHODOLOGY/PRINCIPAL FINDINGS: Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. CONCLUSIONS/SIGNIFICANCE: We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis.


Assuntos
Echinococcus multilocularis/enzimologia , Proteínas de Helminto/metabolismo , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Células-Tronco/enzimologia , Animais , Proliferação de Células , Echinococcus multilocularis/genética , Echinococcus multilocularis/crescimento & desenvolvimento , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Proteínas de Helminto/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 3/genética , MAP Quinase Quinase Quinase 3/metabolismo , Sistema de Sinalização das MAP Quinases , Células-Tronco/citologia
9.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576208

RESUMO

Sex determination triggers the differentiation of the bi-potential gonad into either an ovary or testis. In non-mammalian vertebrates, the presence or absence of oestrogen dictates gonad differentiation, while in mammals, this mechanism has been supplanted by the testis-determining gene SRY. Exogenous oestrogen can override this genetic trigger to shift somatic cell fate in the gonad towards ovarian developmental pathways by limiting the bioavailability of the key testis factor SOX9 within somatic cells. Our previous work has implicated the MAPK pathway in mediating the rapid cellular response to oestrogen. We performed proteomic and phosphoproteomic analyses to investigate the precise mechanism through which oestrogen impacts these pathways to activate ß-catenin-a factor essential for ovarian development. We show that oestrogen can activate ß-catenin within 30 min, concomitant with the cytoplasmic retention of SOX9. This occurs through changes to the MAP3K1 cascade, suggesting this pathway is a mechanism through which oestrogen influences gonad somatic cell fate. We demonstrate that oestrogen can promote the shift from SOX9 pro-testis activity to ß-catenin pro-ovary activity through activation of MAP3K1. Our findings define a previously unknown mechanism through which oestrogen can promote a switch in gonad somatic cell fate and provided novel insights into the impacts of exogenous oestrogen exposure on the testis.


Assuntos
MAP Quinase Quinase Quinase 1/metabolismo , beta Catenina/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Estrogênios/farmacologia , Humanos , MAP Quinase Quinase Quinase 1/genética , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
10.
Biochem Pharmacol ; 193: 114748, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34461116

RESUMO

Cav1.2 L-type voltage-gated Ca2+ channels play a central role in pancreatic ß-cells by integrating extracellular signals with intracellular signaling events leading to insulin secretion and altered gene transcription. Here, we investigated the intracellular signaling pathway following stimulation of Cav1.2 Ca2+ channels and addressed the function of the transcription factor activator protein-1 (AP-1) in pancreatic ß-cells of transgenic mice. Stimulation of Cav1.2 Ca2+ channels activates AP-1 in insulinoma cells. Pharmacological and genetic experiments identified c-Jun N-terminal protein kinase as a signal transducer connecting Cav1.2 Ca2+ channel activation with gene transcription. Moreover, the basic region-leucine zipper proteins ATF2 and c-Jun or c-Jun-related proteins were involved in stimulus-transcription coupling. We addressed the functions of AP-1 in pancreatic ß-cells analyzing a newly generated transgenic mouse model. These transgenic mice expressed A-Fos, a mutant of c-Fos that attenuates DNA binding of c-Fos dimerization partners. In insulinoma cells, A-Fos completely blocked AP-1 activation following stimulation of Cav1.2 Ca2+ channels. The analysis of transgenic A-Fos-expressing mice revealed that the animals displayed impaired glucose tolerance. Thus, we show here for the first time that AP-1 controls an important function of pancreatic ß-cells in vivo, the regulation of glucose homeostasis.


Assuntos
Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Fator de Transcrição AP-1/metabolismo , Fator 2 Ativador da Transcrição/genética , Fator 2 Ativador da Transcrição/metabolismo , Animais , Benzamidas/química , Benzamidas/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Linhagem Celular Tumoral , Regulação da Expressão Gênica/fisiologia , Intolerância à Glucose , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos , Camundongos Transgênicos , Piridinas/química , Piridinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Interferência de RNA , Ratos , Fator de Transcrição AP-1/genética
11.
Cell Death Dis ; 12(9): 795, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404765

RESUMO

Uncontrolled proliferation is the hallmark of cancer cells. Previous studies mainly focused on the role of protein-coding genes in cancer cell proliferation. Emerging evidence showed that long non-coding RNAs (lncRNAs) also play critical roles in cancer cell proliferation and growth. LncRNA KCNQ1OT1 is found to contribute to carcinogenesis, but its role in acute promyelocytic leukemia (APL) is unclear. In this study, by analyzing data from Gene Expression Omnibus, The Cancer Genome Atlas database and our clinical samples, we found that KCNQ1OT1 was selectively highly expressed in APL. Functional assays demonstrated that knockdown of KCNQ1OT1 reduced APL cell proliferation and increased apoptosis. Further evidence showed that KCNQ1OT1 was mainly located in the cytoplasm of APL patient-derived NB4 cells and APL patient bone marrow samples. Mechanistically, KCNQ1OT1 bound to RNA binding protein FUS, and silencing either KCNQ1OT1 or FUS reduced the expression level and stability of MAP3K1 mRNA. Whereas KCNQ1OT1 and FUS did not affect each other. Importantly, knockdown of MAP3K1 impaired APL cell proliferation. Finally, c-Myc transactivated KCNQ1OT1 in APL cells through binding to its promoter while knockdown of c-Myc decreased KCNQ1OT1 expression. Our results not only revealed that c-Myc transactivated KCNQ1OT1 and upregulated KCNQ1OT1 promoted APL cell proliferation, but also demonstrated that KCNQ1OT1 bound to FUS to synergistically stabilize MAP3K1 mRNA, thus facilitating APL cell proliferation. This study established a previously unidentified role of KCNQ1OT1 in the development of APL, and KCNQ1OT1 may serve as a potential therapeutic target for APL.


Assuntos
Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , MAP Quinase Quinase Quinase 1/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células/genética , Estabilidade Enzimática , Regulação Leucêmica da Expressão Gênica , Humanos , Modelos Biológicos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Ativação Transcricional/genética
12.
Mol Cell Biol ; 41(10): e0008121, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34251884

RESUMO

Cullin-4 ubiquitin ligase (CRL4) complexes are differentially composed and highly dynamic protein assemblies that control many biological processes, including the global genome nucleotide excision repair (GG-NER) pathway. Here, we identified the kinase mitogen-activated protein kinase kinase kinase 1 (MEKK1) as a novel constitutive interactor of a cytosolic CRL4 complex that disassembles after DNA damage due to the caspase-mediated cleavage of MEKK1. The kinase activity of MEKK1 was important to trigger autoubiquitination of the CRL4 complex by K48- and K63-linked ubiquitin chains. MEKK1 knockdown prohibited DNA damage-induced degradation of the CRL4 component DNA-damage binding protein 2 (DDB2) and the CRL4 substrate p21 and also cell recovery and survival. A ubiquitin replacement strategy revealed a contribution of K63-branched ubiquitin chains for DNA damage-induced DDB2/p21 decay, cell cycle regulation, and cell survival. These data might also have implications for cancer, as frequently occurring mutations of MEKK1 might have an impact on genome stability and the therapeutic efficacy of CRL4-dependent immunomodulatory drugs such as thalidomide derivatives.


Assuntos
Reparo do DNA/fisiologia , MAP Quinase Quinase Quinase 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Inibidor de Quinase Dependente de Ciclina p21/genética , DNA/química , Dano ao DNA/fisiologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Células HeLa , Humanos , MAP Quinase Quinase Quinase 1/genética , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitinação
13.
J Exp Clin Cancer Res ; 40(1): 200, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34154626

RESUMO

BACKGROUND: MEK1/ERK signaling pathway plays an important role in most tumor progression, including colorectal cancer (CRC), however, MEK1-targeting therapy has little effective in treating CRC patients, indicating there may be a complex mechanism to activate MEK1/ERK signaling pathway except RAS activated mechanism. METHODS: To investigate the clinical significance of IMP3, we analyzed its expression levels in publicly available dataset and samples from Fudan University Shanghai Cancer Center. The effects of IMP3 on proliferation, migration, and invasion were determined by in vitro and in vivo experiments. To investigate the role of IMP3 in colon carcinogenesis, conditional IMP3 knockout C57BL/6 mice was generated. The IMP3/MEKK1/MEK/ERK signaling axis in CRC was screened and validated by RNA-sequencing, RNA immunoprecipitation, luciferase reporter and western blot assays. RESULTS: We find RNA binding protein IMP3 directly bind to MEKK1 mRNA 3'-UTR, which regulates its stability, promote MEKK1 expression and sequentially activates MEK1/ERK signaling. Functionally, IMP3 promote the malignant biological process of CRC cells via MEKK1/MEK1/ERK signaling pathway both in vitro and in vivo, Moreover, IMP3-/- mice show decreased the expression of MEKK1 as well as colorectal tumors compared with wild-type mice after treatment with azoxymethane/dextran sodium sulfate. Clinically, the expression of IMP3 and MEKK1 are positive correlated, and concomitant IMP3 and MEKK1 protein levels negatively correlate with metastasis in CRC patients. In addition, MEK1 inhibitor in combination with shRNA-IMP3 have a synergistic effect both in vitro and in vivo. CONCLUSION: Our study demonstrates that IMP3 regulates MEKK1 in CRC, thus activating the MEK1/ERK signaling in the progression of colorectal cancer, Furthermore, these results provide new insights into potential applications for combining MEK1 inhibitors with other target therapy such as IMP3 in preclinical trials for CRC patients.


Assuntos
Neoplasias Colorretais/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , RNA Mensageiro/metabolismo , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Progressão da Doença , Humanos , Masculino , Camundongos , RNA Mensageiro/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo
14.
Exp Anim ; 70(4): 459-468, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34078823

RESUMO

In this study, we describe an N-ethyl-N-nitrosourea-induced mouse model with a corneal opacity phenotype that was associated with "eye open at birth" (EOB). Histological and immunohistochemistry staining analysis showed abnormal differentiation of the corneal epithelial cells in the mutant mice. The EOB phenotype was dominantly inherited on a C57BL/6 (B6) background. This allele carries a T941A substitution in exon 4 that leads to an L314Q amino acid change in the open reading frame of MAP3K1 (MEEK1). We named this novel Map3k1 allele Map3k1L314Q. Phalloidin staining of F-actin was reduced in the mutant epithelial leading edge cells, which is indicative of abnormality in epithelial cell migration. Interestingly enough, not only p-c-Jun and p-JNK but also c-Jun levels were decreased in the mutant epithelial leading edge cells. This study identifies a novel mouse Map3k1 allele causing EOB phenotype and the EOB phenotype in Map3k1L314Q mouse may be associated with the reduced level of p-JNK and c-Jun.


Assuntos
Movimento Celular , Etilnitrosoureia/efeitos adversos , Pálpebras/crescimento & desenvolvimento , MAP Quinase Quinase Quinase 1/genética , Mutação , Animais , Células Epiteliais/fisiologia , MAP Quinase Quinase Quinase 1/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
15.
Cells ; 11(1)2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35011600

RESUMO

The MAP3K1 is responsible for transmitting signals to activate specific MAP2K-MAPK cascades. Following the initial biochemical characterization, genetic mouse models have taken center stage to elucidate how MAP3K1 regulates biological functions. To that end, mice were generated with the ablation of the entire Map3k1 gene, the kinase domain coding sequences, or ubiquitin ligase domain mutations. Analyses of the mutants identify diverse roles that MAP3K1 plays in embryonic survival, maturation of T/B cells, and development of sensory organs, including eye and ear. Specifically in eye development, Map3k1 loss-of-function was found to be autosomal recessive for congenital eye abnormalities, but became autosomal dominant in combination with Jnk and RhoA mutations. Additionally, Map3k1 mutation increased eye defects with an exposure to environmental agents such as dioxin. Data from eye developmental models reveal the nexus role of MAP3K1 in integrating genetic and environmental signals to control developmental activities. Here, we focus the discussions on recent advances in understanding the signaling mechanisms of MAP3K1 in eye development in mice and in sex differentiation from human genomics findings. The research works featured here lead to a deeper understanding of the in vivo signaling network, the mechanisms of gene-environment interactions, and the relevance of this multifaceted protein kinase in disease etiology and pathogenesis.


Assuntos
MAP Quinase Quinase Quinase 1/genética , Diferenciação Sexual/genética , Animais , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Interação Gene-Ambiente , Humanos , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos
17.
J Mol Neurosci ; 71(1): 28-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32567007

RESUMO

This study was designed to test whether the Cronobacter sakazakii infection-impaired contextual learning and memory are mediated by the activation of the complement system; subsequent activation of inflammatory signals leads to alternations in serotonin transporter (SERT). To test this, rat pups (postnatal day, PND 15) were treated with either C. sakazakii (107 CFU) or Escherichia coli OP50 (107 CFU) or Luria bertani broth (100 µL) through oral gavage and allowed to stay with their mothers until PND 24. Experimental groups' rats were allowed to explore (PNDs 31-35) and then trained in contextual learning task (PNDs 36-43). Five days after training, individuals were tested for memory retention (PNDs 49-56). Observed behavioural data showed that C. sakazakii infection impaired contextual-associative learning and memory. Furthermore, our analysis showed that C. sakazakii infection activates complement system complement anaphylatoxin (C5a) (a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS1)) and mitogen-activated protein kinase kinase1 (MEKK1). Subsequently, MEKK1 induces pro-inflammatory signals possibly through apoptosis signal-regulating kinase-1 (ASK-1), c-Jun N-terminal kinase (JNK1/3) and protein kinase B gamma (AKT-3). In parallel, activated nuclear factor kappa-light-chain-enhancer B cells (NF-κB) induces interleukin-6 (IL-6) and IFNα-1, which may alter the level of serotonin transporter (SERT). Observed results suggest that impaired contextual learning and memory could be correlated with C5a-mediated NF-κß and ASK1 pathways.


Assuntos
Aprendizagem por Associação/fisiologia , Ativação do Complemento , Complemento C5a/fisiologia , Cronobacter sakazakii/patogenicidade , Infecções por Enterobacteriaceae/complicações , Deficiências da Aprendizagem/etiologia , MAP Quinase Quinase Quinase 5/fisiologia , Transtornos da Memória/etiologia , NF-kappa B/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Proteína ADAMTS1/metabolismo , Animais , Animais Lactentes , Córtex Cerebral/metabolismo , Infecções por Enterobacteriaceae/imunologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/imunologia , Regulação da Expressão Gênica/imunologia , Inflamação , Interferon-alfa/metabolismo , Interleucina-6/metabolismo , Janus Quinases/metabolismo , Deficiências da Aprendizagem/imunologia , Deficiências da Aprendizagem/microbiologia , MAP Quinase Quinase Quinase 1/metabolismo , Transtornos da Memória/imunologia , Transtornos da Memória/microbiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
18.
Exp Cell Res ; 398(2): 112441, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338478

RESUMO

The Yangtze River Delta white goat is a sole goat species that can naturally produce superior-quality brush hair. It's worth to mention that study the developmental mechanism of goat hair follicle stem cells is vital for future breed preservation and molecular breeding. In this study, we successfully isolated hair follicle stem cells from the skin tissue of fetal sheep neck spine, and harvested superior-quality and normal-quality brush hair goat tissue. The expression of miR-31-5p in goat hair follicle stem cells was verified by qPCR and Western blot. The effects of overexpression or inhibition of miR-31-5p on the proliferation and apoptosis of hair follicle stem cells were detected by EdU, CCK-8, flow cytometry, etc. miR-31-5p can significantly improve cell proliferation and inhibit cell apoptosis by targeting RASA1 and upregulating MAP3K1 level, whereas miR-31-5p knockdown led to an opposite effect. These results reveal a miR-31-5p-associated regulatory network between miR-31-5p and RASA1/MAP3K1 during the progression of superiorquality brush hair traits.


Assuntos
Apoptose , Folículo Piloso/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , MicroRNAs/metabolismo , Células-Tronco/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Cabras
19.
Am J Chin Med ; 49(1): 147-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33371810

RESUMO

Acute pancreatitis (AP) is a kind of reversible inflammatory process of the exocrine pancreas. During the process, systemic inflammatory syndromes are involved, which relates closely to inflammatory mediators. Baicalin is a type of flavone compound extracted from Scutellaria baicalensis Georgi and exhibits anti-inflammation effect in several cancers. In this study, baicalin displayed a suppressing role on IL-1[Formula: see text], TNF[Formula: see text] and IL-6 in both cell and mice models. Necrosis was decreased in the baicalin treatment group and got a markedly lower pathological score. In this study, miR-15a is the core intermediate in baicalin regulation, which increased through baicalin treatment and protected pancreas cells and tissues, inhibiting the JNK signaling pathway by targeting MAP2K4. The long non-coding RNA MALAT1 is also a direct target of miR-15a and forms a competitive endogenous RNA (ceRNA) network with MAP2K4, which can be regulated by baicalin. In addition, upstream genes, including CDC42 and MAP3K1, were also regulated by baicalin, of which CDC42 was confirmed to form the second ceRNA network with MALAT1 and miR-15a. In conclusion, baicalin exhibits therapeutic activity towards AP by pumping up miR-15a level and inhibiting CDC42/MAP3K1, which affects AP as a brake by targeting MAP2K4 and inhibiting the JNK signaling pathway.


Assuntos
Flavonoides/farmacologia , Flavonoides/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Pancreatite/tratamento farmacológico , Pancreatite/genética , Fitoterapia , Animais , Células Cultivadas , Ceruletídeo/efeitos adversos , Modelos Animais de Doenças , Flavonoides/isolamento & purificação , MAP Quinase Quinase Quinase 1/metabolismo , Camundongos Endogâmicos C57BL , Pancreatite/induzido quimicamente , Ratos , Scutellaria baicalensis/química , Índice de Gravidade de Doença , Proteína cdc42 de Ligação ao GTP/metabolismo
20.
Nat Commun ; 11(1): 5573, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33149122

RESUMO

Non-coding mutations can create splice sites, however the true extent of how such somatic non-coding mutations affect RNA splicing are largely unexplored. Here we use the MiSplice pipeline to analyze 783 cancer cases with WGS data and 9494 cases with WES data, discovering 562 non-coding mutations that lead to splicing alterations. Notably, most of these mutations create new exons. Introns associated with new exon creation are significantly larger than the genome-wide average intron size. We find that some mutation-induced splicing alterations are located in genes important in tumorigenesis (ATRX, BCOR, CDKN2B, MAP3K1, MAP3K4, MDM2, SMAD4, STK11, TP53 etc.), often leading to truncated proteins and affecting gene expression. The pattern emerging from these exon-creating mutations suggests that splice sites created by non-coding mutations interact with pre-existing potential splice sites that originally lacked a suitable splicing pair to induce new exon formation. Our study suggests the importance of investigating biological and clinical consequences of noncoding splice-inducing mutations that were previously neglected by conventional annotation pipelines. MiSplice will be useful for automatically annotating the splicing impact of coding and non-coding mutations in future large-scale analyses.


Assuntos
Neoplasias/genética , Precursores de RNA/genética , Sítios de Splice de RNA , Splicing de RNA , Quinases Proteína-Quinases Ativadas por AMP , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Bases de Dados Genéticas , Éxons , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Íntrons , MAP Quinase Quinase Quinase 1/genética , MAP Quinase Quinase Quinase 1/metabolismo , MAP Quinase Quinase Quinase 4/genética , MAP Quinase Quinase Quinase 4/metabolismo , Mutação , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , RNA não Traduzido , RNA-Seq , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Smad4/genética , Proteína Smad4/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento do Exoma , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...